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Abstract. To each second-order equation field r on a tangent bundle TM, we associate a 
particular subset X: of l-forms on TM. Lagrangian systems then are characterised by the 
property that 3 ;  contains an element which is non-degenerate and exact. For general 
second-order equation fields r, we study type ( 1 , l )  tensor fields preserving both XF and 
a kind of dual set of vector fields XI. .  Finally, we establish some theorems concerning 3:.  
which cover known results in Lagrangian mechanics. 

1. Introduction 

The last couple of years have shown a revival of interest in tangent bundle geometry 
and Lagrangian mechanics, which to some extent might be viewed as a reaction against 
the overemphasis on symplectic (cotangent bundle) geometry and Hamiltonian 
mechanics in modern literature. It is well known that the cotangent bundle T*M of 
a differentiable manifold M carries a natural or intrinsic symplectic structure, which 
defines an isomorphism between vector fields and 1-forms on T*M. A vector field 
then is Hamiltonian if it is mapped into an exact l-form and different Hamiltonians 
yield different Hamiltonian vector fields on the same symplectic manifold. Concerning 
Lagrange's equations, it is customary to  derive them too from a Hamiltonian vector 
field, this time on the tangent bundle TM. The situation there, however, is quite 
different: the Lagrangian L not only serves to define an associated exact l-form, but 
is needed already to endow TM with a symplectic form; different Lagrangians accord- 
ingly give rise to different symplectic structures. If the Lagrangian formalism appears 
to be geometrically more complicated than the Hamiltonian one, it is largely due to 
this somewhat unsatisfactory feature. 

However, it has been pointed out in several recent publications that the tangent 
bundle does itself possess some intrinsic structures, which play a significant role in the 
formulation of Lagrangian mechanics: see e.g. Klein (1962, 1974, 1983), Grifone 
(1972a, b), Crampin (1983a). The most important object in this respect is a type 
( 1 , l )  tensor field S whose Nijenhuis tensor is zero and, when regarded as a map on 
J ( T M )  (vector fields), is such that at each point its kernel coincides with its image. 
A general manifold endowed with an S having the above properties is called an 
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integrable almost tangent manifold (see e.g. Clark and Bruckheimer 1960, Brickell 
and Clark 1974). An integrable almost tangent manifold can be regarded as generalis- 
ing a tangent bundle in very much the same way as a symplectic manifold generalises 
a cotangent bundle (Crampin (1983b) has discussed the significance of this result in 
Lagrangian mechanics). It would perhaps be an exageration to conclude from this 
that S on TM is as fundamental for Lagrangian mechanics as the fundamental 1-form 
on T*M is for Hamiltonian mechanics. Yet, it is equally true that the role of S has 
been underestimated in the conventional symplectic formulation of Lagrangian 
mechanics referred to at the beginning. 

In the present paper we re-examine the description of Lagrange's equations of 
motion on TM. Our main point is that two distinct stages may be identified, to 
advantage, in the definition of a Lagrangian vector field. The first stage is reminiscent 
of the canonical isomorphism between X ( T * M )  and X*(T*M)  (the first stage in 
defining Hamiltonian vector fields); it is, however, a much weaker form of relation as 
it merely associates to every second-order equation field r on TM a set of 1-forms 
denoted by XT. The intrinsic (1, 1) tensor field S on TM plays a dominant role in this 
association. The second stage bears even greater resemblance to the Hamiltonian 
picture, as it defines r to be a Lagrangian vector field when X:! contains an exact 
1-form. These matters are described in § 3 of the paper (§  2 being devoted to some 
preliminary remarks on tangent bundle geometry). 

As an immediate consequence of keeping these two stages separate, one is prompted 
to look again at the study of general second-order equation fields (not necessarily of 
Lagrangian type) on TM. Our principal idea here is that X:! is an object worthy of 
more detailed study in its own right. To support this claim, we advance two types of 
arguments. First we show there exist some 'natural tools' for the study of X,* in the 
form of ( 1 , l )  tensor fields R preserving XF (§ 4). Next, we establish how a couple 
of well known results from Lagrangian mechanics, as for example Noether's theorem, 
already live at the first stage, i.e., there are theorems concerning X,* which straightfor- 
wardly reduce to those known results when the system happens to be Lagrangian (0 5 ) .  
A number of related aspects and outlooks for further study are discussed in 9 6. 

2. Preliminaries 

Let M be an n-dimensional differentiable manifold. On TM one can define an intrinsic 
( 1 , l )  tensor field S, which in terms of natural bundle coordinates (si, U') reads (with 
summation convention) 

S = (a/av')Odq'. (1) 
In particular, S has constant rank n, it satisfies 

sz = 0,  

and its Nijenhuis tensor vanishes, a condition which may be most conveniently expressed 
for our purposes, in the form 

2s , , , s  = 2,s. s (3)  
for all vector fields X on TM, where 3, denotes Lie derivation with respect to X 
Note that from (2) it follows that for each vector field X E X( T M ) ,  

2 x s . s  = - s o 2 x s .  (4) 
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We recall that a type ( 1 , l )  tensor field can be regarded as a linear map on the 
module of vector fields or alternatively as a map on the module of l-forms. In this 
paper we shall be concerned most frequently with the action of type ( 1 , l )  tensor fields 
on l-forms. Thus we shall be dealing then with what in linear algebra would be the 
adjoint, or transpose, of the linear map corresponding to the action of the tensor on 
vectors. We make no notational distinction between the two. The reader is warned, 
however, that where our tensor fields are thought of as acting on l-forms, there are 
minor differences between some of our formulae and those in papers by authors who 
adopt the opposite convention. In particular, in this paper, a composition of (1, 1) 
tensor fields of the form V = To U will exclusively refer to the action on l-forms: 
V ( a )  = T (  U ( a ) )  for all a EX*( T M ) .  The action on vector fields then immediately 
follows byduality: V ( X )  = U (  T ( X ) )  for all X E X( T M ) .  Thecommutator To U - U0 T 
of type ( 1 , l )  tensor fields will be denoted by [ T, U ] .  

In terms of the intrinsic tensor field S, a second-order equation field r on TM is 
fully characterised by the property S(T) = A, where A is the dilation vector field u 'a /au ' .  
In local coordinates r reads 

r = d ( a / a q ' )  + A ' ( q ,  ~ ) a / a d .  

( 2I-S) 0 s = - s, 
It can be shown (Grifone 1972a) that the following intrinsic properties hold true 

S O ( 2 r S )  = s, ( 5 )  

and that these further imply 

(-Ye,S)2 = 1, 

where Z is the identity tensor field (see also Crampin 1983a). For later use, we finally 
mention the following property, which follows immediately from (3) and (4). 

Lemma 2.1. If X E  X( T M )  satisfies S ( X )  = 0 (i.e. X is vertical), then 

so2xs=o.  (7) 

3. Lagrangian vector fields 

To each second-order equation field r on TM we now associate a set of l-forms X,* 
defined by, 

X ; ~ = ( ~ E X * ( T M ) I ~ ~ ( S ( ~ ) ) = ~ ) .  (8) 

4 = aj(q,  U )  du'+T(aj)  dq'. 

The elements of X,* locally are of the form 

(9) 

We note that all du' locally belong to X? and that XF is a real vector space but not 
a module over the ring of functions (it is, however, a module over the ring of 'constants 
of the motion', that is, functions f satisfying r( f )  = 0) .  

Definition 3.1. 4 E X,* is called non-degenerate if dS( 4) is a symplectic form. 

Locally this means that the matrix ( d a , / a u ' )  is non-singular. 
We now come to the characterisation of Lagrangian systems. 
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Definition 3.2 

exists a non-degenerate 4 E X,* which is exact: 4 = d L  for some %“-function L. 

closed: d 4  = 0. 

(i) A second-order equation field is called a Lagrangian vector field if there 

(ii) r is called locally Lagrangian if there exists a non-degenerate 4 E It:? which is 

Identification of the local expression (9) of 4 with dL clearly shows that the 
differential equations corresponding to a Lagrangian vector field are indeed the Euler- 
Lagrange equations derived from L. 

Remark. The condition Lfe,(S(dL)) = dL, which characterises a Lagrangian vector field 
r, can immediately be rewritten in the form 

ir deL = -dEL, (10) 

where = S(dL) is the usual PoincarC-Cartan form and EL is the energy function. 
So, obviously, nothing new is to be expected when the two stages of the definition of 
a Lagrangian vector field are joined together. As explained in the introduction, 
however, the idea is to insist on a distinctiori between these two stages. We therefc-e 
investigate in the next sections some properties of It: ,* for arbitrary second-order 
equation fields. 

4. Type (1,l) tensor fields preserving J: 

In defining a new object like X?, it is quite natural to wonder what kind of actions 
preserve that object. It is for instance readily seen that Lie derivation with respect to 
a vector field in general does not preserve I t :? .  However, X,*  is invariant under the 
action of suitable type (1, 1) tensor fields. In this section we will characterise tensor 
fields, which preserve X,* and we will indicate a couple of ways of constructing such 
tensor fields out of other given objects. 

Proposition 4.1.  In order that a type (1 , l )  tensor field R preserves X,*, it is sufficient 
that R commutes with S and satisfies Y r R  O S  = 0. 

Local expression: starting from the general coordinate expression of a (1 , l )  tensor 
field R on TM, it is straightforward to check that the requirements of proposition 4.1 
imply that R has the following form, 

(11) R = a:[( a /aq ’ )  0 dq + (a/au’) 0 d U k ]  + r( a : ) ( d / a u ’ )  0 dq ‘. 
Therefore, whenever we have at our disposal functions a:(q, U), which under an 
arbitrary change of bundle coordinates 
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transform as 

a ;  = a i ( a Q ' / a q l ) a q k / a Q " ' ,  (13) 

we are sure that an R of the form (11) has all the right tensorial properties and thus 
defines a global object. 

One obvious way of providing suitable functions a i  is as the coefficients of a given 
type ( 1 , l )  tensor field A on the base manifold M. In such a case T ( a i )  is actually 
independent of the choice made for r, so that the resulting R will preserve XF for all 
second-order equation fields r. This is summarised in the following result. 

Proposition 4.2. Let A be a type ( 1 , l )  tensor field on M. There exists a unique type 
( 1 , l )  tensor field A" on TM, characterised by the following properties, 

(i) A'(.rr*a) = .rr*(A(a)), V a  E X*(M) ,  
where .rr : TM + M denotes the tangent bundle projection, 

(ii) [A', SI = 0 
(iii) YrA'O S = 0 for all second-order equation fields r. 
The tensor field A' is called the complete lift of A. Our construction, though 

different from that given by Yano and Ishihara (1973), has the same effect as theirs. 
Recall that the complete lift of a vector field X=[ ' (q)a /dq '  on M is given by 
x'= [ ' a / a q ' +  ( a g ' / a q J ) d a / a d  (for an intrinsic definition of X', see e.g. Crampin 
(1983a)). Apart from the similarity between the local expression for X' and the 
formula (1 1) for A', the terminology concerning A' is further justified by the fact that 
A' maps complete lifts of vector fields into complete lifts. 

Next, consider a general vector field Y on TM, whose local expression is given by 
Y = p'a/aq' + d a / a v ' .  If we set 

a i  = a p J / a v k ,  (14) 

it is easy to verify that a i  satisfies the transformation rule (13) under an arbitrary 
coordinate transformation of type (12). We thus discover that the prescriptions (14) 
uniquely associate an appropriate (1, 1) tensor field R to each given vector field Y, 
as is formalised in the following proposition. 

Proposition 4.3. Let Y E  X( T M )  and r a second-order equation field be given. There 
exists a unique type ( 1 , l )  tensor field RY on TM, characterised by the following 
properties, 

(i) S o  ( RY - YyS) = 0, 
(ii) [R,, SI = 0, 
(iii) ZrRY 0 S = 0. 

For the proof, it suffices to recognise that (i) intrinsically characterises the prescriptions 
(14). 

Remarks 
(1) If Y is projectable onto M, then RY = 0. 
(2) If Y is itself a second-order equation field, then RY = I. 
(3) An explicit expression for RY independent of coordinates may be derived as 

follows. From (ii), (i) can be written as R y o S = S o Y Y S .  Taking the Lie derivative 
with respect to r and using (iii) we obtain R y o Y r S =  Z r ( S o Y y S ) .  Composition with 
TrS,  in view of (6), then gives R y = Z r ( S o Y y S ) o Y r S .  Making repeated use of the 



2004 WSarlet, F Cantrijn and M Crampin 

properties (4) and ( 5 ) ,  this result may be written in the following alternative form, 
more convenient for later applications: 

R y  = LfrS02’yS+SO2’~[r,y~S. (15) 

An intrinsic proof of the above proposition then consists in first verifying that (15) 
satisfies (i), (ii) and (iii) (this requires repeated use of the properties mentioned in 0 2 
again), and then checking that uniqueness follows from the easily proven property: if 
R O S  = 0 and Y r R  0 S = 0, then R = 0 (or indeed from the derivation of the formula 
for RY above). 

(4) If Y y S  = 0, then R Y  = 0. 

It is of interest to introduce here a kind of dual of XF, namely a subset of vector 
fields on TM, denoted by X r  and defined by 

Xr = { Y E  X( T M )  I S([T, Y]) = 0) .  (16) 

Locally, the elements of Xr have the form 

Y = p i ( a / a q i )  +r(pi)a/ad. 
They were studied under the name variation fields of r by Crampin (1983a). All 
symmetries of r belong to X r  and are further (locally) characterised by the requirement 

rr($) = Y ( A ~ ) .  (18) 

(Y, 4) = r(ajp’).  (19) 

The duality between the formulae (9) and (17) is apparent; we have 

This relation in fact completely describes the duality between XF and E r ,  so let us 
have a look at it in more intrinsic terms. For 4 E JT and Y E  J r ,  we have 

( Y ,  4 ) = ( Y ,  Tr (S(# ) ) )+ (S(YrY) ,  4), 
the last term actually being zero in view of (16). This can be rewritten as, 

which is the same as (19). The above calculation, however, also shows us this: if (20) 
holds for all 4 E XF, then Y must belong to X r  (dually, if (20) is satisfied for all Y E  X,-, 
then 4 belongs to XF). As an application of this result, consider again a ( 1 , l )  tensor 
field R ,  satisfying the assumptions of proposition 4.1. Then, for all 4 E X ?  and Y 
being an element of 3 r,  we have (knowing that R (4) E J F),  

( R  ( Y )  , 4) = ( Y, R (4 )) = zr((  Y, S ( R  (4)))) 
= z r ( (  Y, R ( S ( + ) ) ) )  = z r ( ( R (  Y ) ,  S(#))), 

which implies that also Xr is preserved under the mapping R ,  a property which of 
course could also be checked using the local expressions (11) and (17). 

From (15), (16) and lemma 2 . l ,  we immediately obtain: if Y belongs to Xr ,  then 

R y  = YrSo2’yS. (21) 

Note finally that Jr contains the complete lifts of arbitrary vector fields on M. 
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Having established that there indeed exist rather natural tools for acting on X: 
(and X r ) ,  we now turn to other aspects, which should give more weight to the present 
approach. In the next section, we will derive a number of results on X:, of a quite 
general nature, which cover known theorems from Lagrangian mechanics in the 
following sense: they reduce to those theorems in case the # of interest ( E X:) happens 
to be exact. 

5. Generalisation of known results in Lagrangian mechanics 

Throughout this section, T will again be an arbitrary second-order equation field on TM. 

Proposition 5.1. For each # E X:, we have 

k(#-d& # ) ) = O s  

In case T is a Lagrangian vector field and # = dL, it is clear that # - d(A, #) = -dEL, 
so that (22) reduces to the usual conservation of energy. Of course, (22) cannot strictly 
be considered as a generalisation of the conservation of energy, as it does not represent 
a conservation law. The word generalisation is better justified for the following simple 
results. 

Proposition 5.2. (‘gauge freedom’). Let f be a given function on the base manifold M, 
then: # E X :+ 4‘ = # + dT( f )  E X :. 

Proof. A simple coordinate calculation shows that S(dT(f))  = df, from which it follows 
that 2rdf  belongs to X: for all f~ %=(M).  

Our next proposition deals with symmetries of T. Recall that a symmetry Y is a point 
symmetry if Y is the complete lift of some vector field on the base manifold (and 
satisfies [ Y, T] = 0 of course). A point symmetry Y must satisfy TyS = 0, since this 
holds for any complete lift; and in fact any symmetry Y such that 2 y S  = 0 is a point 
symmetry. 

Proposition 5.3. Let Y be a point symmetry of r, then # E X : + 2 &  E X,*. 

Proof. For # E XF and [ Y, T] = 0 we get, 

=Tyzr(S(#)) = 2 r z y ( S ( # ) )  

= Tr(2yS(#) )  +zr(S(Yy#)) = yr(S(zy#)). 

In case # =dL, the statement of proposition 5 . 2  reduces to the well known 
gauge-freedom in Lagrangian mechanics, while proposition 5.3 then tells us that a 
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point symmetry produces a new, equivalent (or sometimes only ‘subordinate’ (Marmo 
and Saletan 1977)) Lagrangian. We note in passing that the possible existence of 
equivalent Lagrangians fits quite well in our definition of a Lagrangian vector field, as 
it is not excluded that more than one element of XF could be exact (with more than 
just gauge difference). 

The next result is less trivial and refers to symmetries which are not of point type. 
It is then no longer true that Lie differentiation preserves the whole of X : f ;  however, 
one may still manufacture another element of XF out of a given one, 4, by means of 
Lie differentiation provided that 4 satisfies a certain condition. 

Proposition 5.4 
(i) If Y is a symmetry of r, and 4 E XF satisfies 

S(R,(d)-df)=O, (23) 

4’ = Lfy+ - dT( f )  (24) 

for some f E %-( T M ) ,  then 

belongs to XF. 

satisfies (23) for an f such that 4’ belongs to X : f ,  then Y is a symmetry of r. 
(ii) Conversely, if Y E  Xr and if there is a non-degenerate element 4 of XF which 

Proof. From (24) we get 

S(4’)  =zY(S(4))-(zYS)(4)-S(dr(f)). 

y r  ( S ( 4 ’ ) 1 - 4 ’ = z [ r ,  Y I( S ( 4 1 1 - Tr  ( ~ Y S  ( 4 1 + S ( d r (  f ) 1 - df 1. 
A straightforward computation, using (8), then gives 

(25) 

From propositions 4.1 and 4.3, we know that R y ( 4 )  E XF. Therefore, taking the Lie 
derivative of (23) with respect to r, we obtain 

z r S ( d f ) + S ( d r ( f ) )  = R Y ( ~ ) .  

Operating on both sides with S r S  and taking account of (5) and (6),  we see that 

df - S(dr ( f ) )  = (zrSo R Y ) (  4). 

zyS(4)+S(dT(f ) ) -df=O.  (26) 

Tr(S(4’))- 4’  = i [ r , ~ ]  dS(4 )  + d U 7  YI, S(4)) 

Now Y belongs to X r ,  so that RY is given by (21) and thus, 

With (26), the relation (25) reduces to 

= i [ r . ,Y ]  dS(4) .  (27) 

where the last step is a consequence of (16). Both parts of the proposition now 
immediately follow from (27). 

It is instructive to look at the coordinate expression of the assumption (23), which 
for Y and 4 respectively of the form (17) and (9) reads, 

(a*’/av’)a, = af /avi .  (28) 

We then see that part (i) of the previous proposition precisely covers a theorem by 
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Prince (1983), which states that (for the autonomous case) a symmetry Y of a 
Lagrangian system with Lagrangian L, satisfying (28) for some f (and with uj = aL/dv'), 
produces a new (possibly equivalent) Lagrangian L' ,  which is given by the formula 

We finally arrive at a generalisation of Noether's theorem which, within the present 
L'= Y ( L ) - T ( ~ ) .  

framework, can be formulated as follows. 

Proposition 5.5. Let r be a second-order equation field on TM and consider a non- 
degenerate 4 E It;. If Y E  X( TM)  satisfies, 

(i) ZY (S(4)) = df, for some function f (29) 
(ii) iy(S-d(A, 4)) =0 ,  (30) 

then F = f -  ( Y, S (  4)) is a first integral of r. Conversely, to each first integral F there 
corresponds a vector field Y satisfying (29) and (30). 

Proof. From (29) we get 

i y  dS( 4) = d( f- ( Y, S (  4))) = d E  

Using the relation ir d S ( 4 )  = 4 - d(A, 4) (see proposition 5.1) and (30) we then 
immediately find T ( F )  = 0. Conversely, since dS( 4) is symplectic, each first integral 
F of r defines a unique vector field Y according to i y  dS(4 )  = dF, from which (29) 
immediately follows with f = F+( Y, S(4)). Expressing T(F)  = 0 further leads to (30). 

Remarks 
( 1 )  In general, for a vector field Y satisfying (29) and (30), we have that 

i[y,r] dS(4 )  = YYir dS(4)  = i y  d 4  # 0, 

so that Y is not a symmetry of r. However, in case C#J = dL, we do have i [y , r l  dS(4 )  = 0, 
which implies [ Y, r] = 0 and so we are reduced to Noether's theorem for Lagrangian 
systems. 

(2) In case 4 is of the form 4 = d L +  Qi dq', r satisfies irdOL= -dE,+ Qi dq', 
which shows that the corresponding differential equations are 'Lagrange's equations 
of the first kind' with 'non-conservative forces' Q,. Proposition 5.5 then gives precisely 
the Noether theorem analogue for non-conservative systems as derived in Cantrijn 
(1982), in which the corresponding vector fields Y were indeed not symmetries of r. 

6. Some further reflections 

The preceding sections are meant to create new interest in the study of geometrical 
aspects of second-order differential equations. At the same time they contain many 
clues for further generalisations. 

Let us first go back for a moment to the definition of Lagrangian vector fields in 
§ 3. It is clear that the two steps of this definition could formally be maintained for 
vector fields on TM which are not of second-order type. One may wonder whether 
this would still have something to do with Lagrangian mechanics. So let X be an 
arbitrary vector field on TM with local representation 

x = p y q ,  v )a /aq'+a' (q ,  u)a /au ' .  (31) 
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We again say that X is Lagrangian if there exists a non-degenerate, exact 1-form 
C$ = dL, such that PX(S(d)) = 4. This requirement locally means that 

x ( a L / a d )  - a ~ / a q l =  - ( a ~ / a u ~ ) a p ~ / a q ]  

( a L / a u k ) a p k / a u l  = aL/avl. 
and (32) 

Considering the associated system of differentialequations 4' = p' (4 ,  U), U' = a'(4,  U), 
we assume that ( a p k / a u J )  is a non-singular matrix. Then, solving the first set of 
equations for the U', U' = [ ' ( q ,  q ) ,  we can define corresponding second-order differential 
equations as follows, 

4' = ( ~ / a 4 ~ ) ( 4 , 5 ( 4 ,  4 ) ) q k  + ( a p ' / a v k ) ( 4 ,  5(4, 4 ) ) a k ( 4 ,  5(4 ,4) )  

= A ' ( 4 , 4 ) ,  (33) 

which defines the functions A'. One can now verify the following rather remarkable 
feature: although a transformation of the form (4, v ) - ( 4 , 4  = p ( 4 ,  U)) does not pre- 
serve the canonical structure of the fundamental ( 1 , l )  tensor field s, it is correct to 
say that the second-order equation field r associated to (33) represents Euler- 
Lagrange equations corresponding to the Lagrangian L(4,4)  = L(4,5(4,4)).  It may 
therefore be of interest to have a closer look at first-order equations (31) which satisfy 
the relations (32) for some L, even in the degenerate case where the matrix ( a p k / a v l )  
is singular. 

The above remark solely relates to the Lagrangian content of the theory, i.e. it 
would not be meaningful to study X$ for an arbitrary vector field X on TM. On the 
other hand, however, the interest of X,* may extend beyond the strict requirement 
that r be of second-order type. As a matter of fact, when we return to the discussion 
of § §  4 and 5 ,  it becomes clear that the important properties of r we are using all the 
time are the relations ( 5 ) ,  which in particular also imply ( 6 ) .  Hence, one could reconsider 
the whole theory, replacing second-order equation fields everywhere by vector fields 
r which satisfy (3,  i.e. vector fields which, in Grifone's terminology, define a (non- 
homogeneous) connection 2'rS on M (Grifone 1972a, definition 1.14). One can easily 
check that, in local coordinates, a vector field r satisfying ( 5 )  will be of the form, 

r =  (u'+h'(q))a/aq'+Z'(q,  u)a/av ' .  (34) 

In terms of these vector fields one can again introduce Lagrangian systems according 
to definition 3.2 and the remark made about vector fields X as in (31) certainly remains 
valid for this more restrictive class (34). Moreover, one can now leave the framework 
of tangent bundle geometry for the more general almost tangent manifolds (see the 
introduction). A technical problem arising in Crampin's analysis of almost tangent 
structures (Crampin 1983b) was the fact that the definition of a second-order equation 
field there only makes sense after choosing a zero section for the local fibration defined 
by ImS. In view of the previous observation one can now avoid this difficulty by 
considering simply those vector fields on an almost tangent manifold, which satisfy the 
relations ( 5 )  with respect to the given tensor field S. All of this certainly merits further 
investigation. 

To end this discussion, let us point out a couple of areas, which rather obviously 
call for an extension of the present considerations. First of all, we should work out a 
generalisation allowing for non-autonomous second-order equations. Secondly, we 
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may contemplate a generalisation to differential equations of order higher than two 
with reference to so-called higher-order Lagrangian mechanics. 
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